کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584804 1630506 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Abundant p-singular elements in finite classical groups
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Abundant p-singular elements in finite classical groups
چکیده انگلیسی

In 1995, Isaacs, Kantor and Spaltenstein proved that for a finite simple classical group G defined over a field with q elements, and for a prime divisor p   of |G||G| distinct from the characteristic, the proportion of p-singular elements in G (elements with order divisible by p  ) is at least a constant multiple of (1−1/p)/e(1−1/p)/e, where e is the order of q modulo p. Motivated by algorithmic applications, we define a subfamily of p-singular elements, called p-abundant elements, which leave invariant certain ‘large’ subspaces of the natural G-module. We find explicit upper and lower bounds for the proportion of p-abundant elements in G, and prove that it approaches a (positive) limiting value as the dimension of G tends to infinity. It turns out that the limiting proportion of p-abundant elements is at least a constant multiple of the Isaacs–Kantor–Spaltenstein lower bound for the proportion of all p-singular elements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 408, 15 June 2014, Pages 189–204
نویسندگان
, , ,