کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584909 1630514 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminants of symplectic graded involutions on graded simple algebras
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Discriminants of symplectic graded involutions on graded simple algebras
چکیده انگلیسی
In this article, we define and study the discriminant of symplectic graded involutions on non-inertially split graded simple algebras with simple 0-component. In particular, we show that if F is a graded field of characteristic different from 2, D is a graded central division algebra over F with exp(D)=2 and |ker(θD)|>4 (see the preliminaries below), A=Mn(D), and σ is a graded involution of symplectic type on A, then there is only a finite number of values for the discriminants Δσ(τ), where τ describes all graded involutions of symplectic type on A (see Proposition 2.11). Consequently, for any graded central simple algebra C over F with C0 simple non-split, exp(C)=2, |ker(θC)|>4 and deg(C)ind(C) even, we have Δσ(τ)=0 for any graded involutions of symplectic type σ and τ on C (see Corollary 2.12). We prove also that if E is a Henselian valued field with residue characteristic different from 2, D is a central division algebra of exponent 2 over E with |ker(θD)|>4, and B=Mn(D) with n even, then for any symplectic involutions σ, τ on B, preserving a tame gauge defined on B, we have Δσ(τ)=0 (see Corollary 3.5).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 400, 15 February 2014, Pages 17-32
نویسندگان
,