کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584991 1630519 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strongly liftable schemes and the Kawamata–Viehweg vanishing in positive characteristic III
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Strongly liftable schemes and the Kawamata–Viehweg vanishing in positive characteristic III
چکیده انگلیسی

A smooth scheme X over a field k   of positive characteristic is said to be strongly liftable over W2(k)W2(k), if X and all prime divisors on X   can be lifted simultaneously over W2(k)W2(k). In this paper, we first deduce the Kummer covering trick over W2(k)W2(k), which can be used to construct a large class of smooth projective varieties liftable over W2(k)W2(k), and to give a direct proof of the Kawamata–Viehweg vanishing theorem on strongly liftable schemes. Secondly, we generalize almost all of the results in [18] and [19] to the case where everything is considered over W(k)W(k), the ring of Witt vectors of k.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 395, 1 December 2013, Pages 12–23
نویسندگان
, ,