کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585027 1630518 2013 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On distinguished orbits of reductive representations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On distinguished orbits of reductive representations
چکیده انگلیسی

Let G be a real reductive Lie group and let τ:G→GL(V)τ:G→GL(V) be a real reductive representation of G with (restricted) moment map mg:V∖{0}→gmg:V∖{0}→g. In this work, we introduce the notion of nice space of a real reductive representation to study the problem of how to determine if a G-orbit is distinguished   (i.e. it contains a critical point of the norm squared of mgmg). We give an elementary proof of the well-known convexity theorem of Atiyah–Guillemin–Sternberg in our particular case and we use it to give an easy-to-check sufficient condition for a G-orbit of an element in a nice space to be distinguished. In the case where G is algebraic and τ is a rational representation, the above condition is also necessary (making heavy use of recent results of Michael Jablonski), obtaining a generalization of Nikolayevskyʼs nice basis criterion. We also provide useful characterizations of nice spaces in terms of the weights of τ. Finally, some applications to ternary forms are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 396, 15 December 2013, Pages 61–81
نویسندگان
,