کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4585106 | 1630522 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalized Serre conditions and perverse coherent sheaves
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism YâX where the geometry of Y is “nicer” than that of X. One version of this problem, first studied by Faltings, requires Y to be Cohen-Macaulay; in this case YâX is called a Macaulayfication of X. In another variant, one requires Y to satisfy the Serre condition Sr. In this paper, the authors introduce generalized Serre conditions-these are local cohomology conditions which include Sr and the Cohen-Macaulay condition as special cases. To any generalized Serre condition SÏ, there exists an associated perverse t-structure on the derived category of coherent sheaves on a suitable scheme X. Under appropriate hypotheses, the authors characterize those schemes for which a canonical finite SÏ-ification exists in terms of the intermediate extension functor for the associated perversity. Similar results, including a universal property, are obtained for a more general morphism extension problem called SÏ-extension.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 392, 15 October 2013, Pages 85-96
Journal: Journal of Algebra - Volume 392, 15 October 2013, Pages 85-96
نویسندگان
Christopher L. Bremer, Daniel S. Sage,