کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585106 1630522 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Serre conditions and perverse coherent sheaves
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Generalized Serre conditions and perverse coherent sheaves
چکیده انگلیسی
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism Y→X where the geometry of Y is “nicer” than that of X. One version of this problem, first studied by Faltings, requires Y to be Cohen-Macaulay; in this case Y→X is called a Macaulayfication of X. In another variant, one requires Y to satisfy the Serre condition Sr. In this paper, the authors introduce generalized Serre conditions-these are local cohomology conditions which include Sr and the Cohen-Macaulay condition as special cases. To any generalized Serre condition Sρ, there exists an associated perverse t-structure on the derived category of coherent sheaves on a suitable scheme X. Under appropriate hypotheses, the authors characterize those schemes for which a canonical finite Sρ-ification exists in terms of the intermediate extension functor for the associated perversity. Similar results, including a universal property, are obtained for a more general morphism extension problem called Sρ-extension.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 392, 15 October 2013, Pages 85-96
نویسندگان
, ,