کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585193 1630529 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification theorems for hermitian forms, the Rost kernel and Hasse principle over fields with cd2(k)⩽3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Classification theorems for hermitian forms, the Rost kernel and Hasse principle over fields with cd2(k)⩽3
چکیده انگلیسی

In this paper we prove classification theorems for hermitian forms over some central simple algebras with involution over a field k with cd2(k)⩽3. We apply these results to show the triviality of the kernel of the Rost invariant for the classical algebraic groups associated to such hermitian forms over k. We also deduce a Hasse principle for algebraic groups defined over function fields of curves over p-adic fields thus proving a conjecture due to Colliot-Thélène–Parimala–Suresh for a large class of groups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 385, 1 July 2013, Pages 294-313