کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585285 1630530 2013 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of unital simple Leavitt path algebras of infinite graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Classification of unital simple Leavitt path algebras of infinite graphs
چکیده انگلیسی

We prove that if E and F are graphs with a finite number of vertices and an infinite number of edges, if K is a field, and if LK(E) and LK(F) are simple Leavitt path algebras, then LK(E) is Morita equivalent to LK(F) if and only if and the graphs E and F have the same number of singular vertices, and moreover, in this case one may transform the graph E into the graph F using basic moves that preserve the Morita equivalence class of the associated Leavitt path algebra. We also show that when K is a field with no free quotients, the condition that E and F have the same number of singular vertices may be replaced by , and we produce examples showing this cannot be done in general. We describe how we can combine our results with a classification result of Abrams, Louly, Pardo, and Smith to get a nearly complete classification of unital simple Leavitt path algebras — the only missing part is determining whether the “sign of the determinant condition” is necessary in the finite graph case. We also consider the Cuntz splice move on a graph and its effect on the associated Leavitt path algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 384, 15 June 2013, Pages 45-83