کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4585338 | 1630535 | 2013 | 18 صفحه PDF | دانلود رایگان |

In this paper we primarily study monomial ideals and their minimal free resolutions by studying their associated lcm-lattices. In particular, we formally define the notion of coordinatizing a finite atomic lattice P to produce a monomial ideal whose lcm-lattice is P, and we give a characterization of all such coordinatizations. We prove that all relations in the lattice L(n) of all finite atomic lattices with n ordered atoms can be realized as deformations of exponents of monomial ideals. We also give structural results for L(n). Moreover, we prove that the cellular structure of a minimal free resolution of a monomial ideal M can be extended to minimal resolutions of certain monomial ideals whose lcm-lattices are greater than that of M in L(n).
Journal: Journal of Algebra - Volume 379, 1 April 2013, Pages 259-276