کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585354 1630536 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Krull-dimension of the power series ring over a nondiscrete valuation domain is uncountable
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Krull-dimension of the power series ring over a nondiscrete valuation domain is uncountable
چکیده انگلیسی

Let V be a rank-one nondiscrete valuation domain with maximal ideal M. We prove that the Krull-dimension of V〚X〛V∖(0) is uncountable, and hence the Krull-dimension of V〚X〛 is uncountable. This corresponds to the well-known fact that the Krull-dimension of the ring of entire functions is uncountable. In fact we construct an uncountable chain of prime ideals inside M〚X〛 such that all the members contract to (0) in V. Our method provides a new proof that the Krull-dimension of the ring of entire functions is uncountable. It is also shown that V〚X〛V∖(0) is not even a Prüfer domain, while the ring of entire functions is a Bezout domain. These are answers to Eakin and Sathayeʼs questions. Applying the above results, we show that the Krull-dimension of V〚X〛 is uncountable if V is a nondiscrete valuation domain.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 378, 15 March 2013, Pages 12-21