کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585506 1630543 2012 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Indecomposable modules over pure semisimple hereditary rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Indecomposable modules over pure semisimple hereditary rings
چکیده انگلیسی

If R is a hereditary left artinian ring, then R is left pure semisimple if and only if the family R-ind of all finitely generated indecomposable left R-modules has a (unique) Ext-injective partition R-ind=⋃α⩽δUα. This partition is used to give a complete description of the distribution of all indecomposable modules over a left pure semisimple hereditary indecomposable ring R of infinite representation type. More precisely, R-ind is the disjoint union of the countable set of all preinjective modules and the finite set of all preprojective modules, and countable sets of Auslander–Reiten components of the form ⋃k<ωUα+k, for all limit ordinals α, constructed from the Ext-injective partition of R-ind. In particular, we show that an indecomposable left R-module M is not the source of a left almost split morphism in R-mod if and only if M belongs to Uα, where α is an infinite limit ordinal; and the direct sum of modules in Uα is not endofinite for each infinite limit ordinal α. Moreover, the endomorphism ring of each indecomposable left R-module is a division ring.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 371, 1 December 2012, Pages 577-595