کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585576 1630545 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative construction of irreducible polynomials reducible modulo every prime
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An iterative construction of irreducible polynomials reducible modulo every prime
چکیده انگلیسی

We give a method of constructing polynomials of arbitrarily large degree irreducible over a global field F but reducible modulo every prime of F. The method consists of finding quadratic f∈F[x] whose iterates have the desired property, and it depends on new criteria ensuring all iterates of f are irreducible. In particular when F is a number field in which the ideal (2) is not a square, we construct infinitely many families of quadratic f such that every iterate fn is irreducible over F, but fn is reducible modulo all primes of F for n⩾2. We also give an example for each n⩾2 of a quadratic f∈Z[x] whose iterates are all irreducible over Q, whose (n−1)st iterate is irreducible modulo some primes, and whose nth iterate is reducible modulo all primes. From the perspective of Galois theory, this suggests that a well-known rigidity phenomenon for linear Galois representations does not exist for Galois representations obtained by polynomial iteration. Finally, we study the number of primes p for which a given quadratic f defined over a global field has fn irreducible modulo p for all n⩾1.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 369, 1 November 2012, Pages 114-128