کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585767 1630555 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real algebraic geometry for matrices over commutative rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Real algebraic geometry for matrices over commutative rings
چکیده انگلیسی

We define and study preorderings and orderings on rings of the form Mn(R) where R is a commutative unital ring. We extend the Artin–Lang theorem and Krivine–Stengle Stellensätze (both abstract and geometric) from R to Mn(R). This problem has been open since the seventies when Hilbertʼs 17th problem was extended from usual to matrix polynomials. While the orderings of Mn(R) are in one-to-one correspondence with the orderings of R, this is not true for preorderings. Therefore, our theory is not Morita equivalent to the classical real algebraic geometry.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 359, 1 June 2012, Pages 89-103