کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4585876 1334075 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The structure of a Laurent polynomial fibration in n variables
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The structure of a Laurent polynomial fibration in n variables
چکیده انگلیسی

Bass, Connell and Wright have proved that any finitely presented locally polynomial algebra in n variables over an integral domain R is isomorphic to the symmetric algebra of a finitely generated projective R-module of rank n. In this paper we prove a corresponding structure theorem for a ring A which is a locally Laurent polynomial algebra in n variables over an integral domain R, viz., we show that A is isomorphic to an R-algebra of the form (SymR(Q))[I−1], where Q is a direct sum of n finitely generated projective R-modules of rank one and I is a suitable invertible ideal of the symmetric algebra SymR(Q). Further, we show that any faithfully flat algebra over a Noetherian normal domain R, whose generic and codimension-one fibres are Laurent polynomial algebras in n variables, is a locally Laurent polynomial algebra in n variables over R.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 353, Issue 1, 1 March 2012, Pages 142-157