کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4585963 | 1334079 | 2011 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Maximal rigid subcategories in 2-Calabi–Yau triangulated categories
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the functorially finite maximal rigid subcategories in 2-CY triangulated categories and their endomorphism algebras. Cluster tilting subcategories are obviously functorially finite and maximal rigid; we prove that the converse is true if the 2-CY triangulated categories admit a cluster tilting subcategory. As a generalization of a result of Keller and Reiten (2007) [KR], we prove that any functorially finite maximal rigid subcategory is Gorenstein with Gorenstein dimension at most 1. Similar as cluster tilting subcategory, one can mutate maximal rigid subcategories at any indecomposable object. If two maximal rigid objects are reachable via simple mutations, then their endomorphism algebras have the same representation type.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 348, Issue 1, 15 December 2011, Pages 49-60
Journal: Journal of Algebra - Volume 348, Issue 1, 15 December 2011, Pages 49-60