کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586051 1334082 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing of the number of right coideal subalgebras of Uq(so2n+1)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Computing of the number of right coideal subalgebras of Uq(so2n+1)
چکیده انگلیسی

In this paper we complete the classification of right coideal subalgebras containing all grouplike elements for the multiparameter version of the quantum group Uq(so2n+1), qt≠1. It is known that every such subalgebra has a triangular decomposition U=U−HU+, where U− and U+ are right coideal subalgebras of negative and positive quantum Borel subalgebras. We found a necessary and sufficient condition for the above triangular composition to be a right coideal subalgebra of Uq(so2n+1) in terms of the PBW-generators of the components. Furthermore, an algorithm is given that allows one to find an explicit form of the generators. Using a computer realization of that algorithm, we determined the number rn of different right coideal subalgebras that contain all grouplike elements for n⩽7. If q has a finite multiplicative order t>4, the classification remains valid for homogeneous right coideal subalgebras of the multiparameter version of the Lusztig quantum group uq(so2n+1) (the Frobenius–Lusztig kernel of type Bn) in which case the total number of homogeneous right coideal subalgebras and the particular generators are the same.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 341, Issue 1, 1 September 2011, Pages 279-296