کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586098 1334085 2011 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Gorenstein property for modular invariants
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Gorenstein property for modular invariants
چکیده انگلیسی

Let G⊂GL(V) be a finite group, where V is a finite dimensional vector space over a field F of arbitrary characteristic. Let S(V) be the symmetric algebra of V and SG(V) the ring of G-invariants. We prove here the following results:Theorem – Suppose that G contains no pseudo-reflection (of any kind).(1)If SG(V) is Gorenstein, then G⊂SL(V).(2)If G⊂SL(V) then the Cohen–Macaulay locus of SG(V) coincides with its Gorenstein locus. In particular if SG(V) is Cohen–Macaulay then it is also Gorenstein.This extends well-known results of K. Watanabe in case . It also confirms a special case of a conjecture due to G. Kemper, E. Körding, G. Malle, B.H. Matzat, D. Vogel and G. Wiese. A similar extension is given to D. Bensonʼs theorem about the Gorenstein property of (S(V)⊗ΛG(V)), the polynomial tensor exterior algebra invariants. Our proof uses non-commutative algebra methods in an essential way.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 345, Issue 1, 1 November 2011, Pages 81-99