کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586132 1334086 2011 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Kurosh problem for algebras of polynomial growth over a general field
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Kurosh problem for algebras of polynomial growth over a general field
چکیده انگلیسی

Lenagan and Smoktunowicz (2007) [LS], (see also Lenagan, Smoktunowicz and Young (in press) [LSY]) gave an example of a nil algebra of finite Gelfand–Kirillov dimension. Their construction requires a countable base field, however. We show that for any field k and any monotonically increasing function f(n) which grows super-polynomially but subexponentially there exists an infinite-dimensional finitely generated nil k-algebra whose growth is asymptotically bounded by f(n). This construction gives the first examples of nil algebras of subexponential growth over uncountable fields.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 342, Issue 1, 15 September 2011, Pages 265-281