کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586323 1334094 2011 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Root Fernando–Kac subalgebras of finite type
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Root Fernando–Kac subalgebras of finite type
چکیده انگلیسی

Let g be a finite-dimensional Lie algebra and M be a g-module. The Fernando–Kac subalgebra of g associated to M is the subset g[M]⊂g of all elements g∈g which act locally finitely on M. A subalgebra l⊂g for which there exists an irreducible module M with g[M]=l is called a Fernando–Kac subalgebra of g. A Fernando–Kac subalgebra of g is of finite type if in addition M can be chosen to have finite Jordan–Hölder l-multiplicities. Under the assumption that g is simple, I. Penkov has conjectured an explicit combinatorial criterion describing all Fernando–Kac subalgebras of finite type which contain a Cartan subalgebra. In the present paper we prove this conjecture for g≄E8.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 336, Issue 1, 15 June 2011, Pages 257-278