کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586441 1630560 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rings whose modules have maximal or minimal injectivity domains
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rings whose modules have maximal or minimal injectivity domains
چکیده انگلیسی

In a recent paper, Alahmadi, Alkan and López–Permouth defined a module M to be poor if M is injective relative only to semisimple modules, and a ring to have no right middle class if every right module is poor or injective. We prove that every ring has a poor module, and characterize rings with semisimple poor modules. Next, a ring with no right middle class is proved to be the ring direct sum of a semisimple Artinian ring and a ring T which is either zero or of one of the following types: (i) Morita equivalent to a right PCI-domain, (ii) an indecomposable right SI-ring which is either right Artinian or a right V-ring, and such that soc(TT) is homogeneous and essential in TT and T has a unique simple singular right module, or (iii) an indecomposable right Artinian ring with homogeneous right socle coinciding with the Jacobson radical and the right singular ideal, and with unique non-injective simple right module. In case (iii) either TT is poor or T is a QF-ring with J2(T)=0. Converses of these cases are discussed. It is shown, in particular, that a QF-ring R with J2(R)=0 and homogeneous right socle has no middle class.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 330, Issue 1, 15 March 2011, Pages 404-417