کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586446 1630560 2011 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The analogue of Büchi's Problem for function fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The analogue of Büchi's Problem for function fields
چکیده انگلیسی

Büchi's n Squares Problem asks for an integer M such that any sequence (x0,…,xM−1), whose second difference of squares is the constant sequence (2) (i.e. for all n), satisfies for some integer x. Hensley's Problem for r-th powers (where r is an integer ⩾2) is a generalization of Büchi's Problem asking for an integer M such that, given integers ν and a, the quantity r(ν+n)−a cannot be an r-th power for M or more values of the integer n, unless a=0. The analogues of these problems for rings of functions consider only sequences with at least one non-constant term.Let K be a function field of a curve of genus g. We prove that Hensley's Problem for r-th powers has a positive answer for any r if K has characteristic zero, improving results by Pasten and Vojta. In positive characteristic p we obtain a weaker result, but which is enough to prove that Büchi's Problem has a positive answer if p⩾312g+169 (improving results by Pheidas and the second author).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 330, Issue 1, 15 March 2011, Pages 482-506