کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586493 1334101 2011 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized Serre duality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Generalized Serre duality
چکیده انگلیسی

We introduce a notion of generalized Serre duality on a Hom-finite Krull–Schmidt triangulated category T. This duality induces the generalized Serre functor on T, which is a linear triangle equivalence between two thick triangulated subcategories of T. Moreover, the domain of the generalized Serre functor is the smallest additive subcategory of T containing all the indecomposable objects which appear as the third term of an Auslander–Reiten triangle in T; dually, the range of the generalized Serre functor is the smallest additive subcategory of T containing all the indecomposable objects which appear as the first term of an Auslander–Reiten triangle in T.We compute explicitly the generalized Serre duality on the bounded derived categories of artin algebras and of certain noncommutative projective schemes in the sense of Artin and Zhang. We obtain a characterization of Gorenstein algebras: an artin algebra A is Gorenstein if and only if the bounded homotopy category of finitely generated projective A-modules has Serre duality in the sense of Bondal and Kapranov.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 328, Issue 1, 15 February 2011, Pages 268-286