کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586526 1334102 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semisimplicity in symmetric rigid tensor categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Semisimplicity in symmetric rigid tensor categories
چکیده انگلیسی

Let λ be a partition of a positive integer n. Let C be a symmetric rigid tensor category over a field k of characteristic 0 or char(k)>n, and let V be an object of C. In our main result (Theorem 4.3) we introduce a finite set of integers F(λ) and prove that if the Schur functor SλV of V is semisimple and the dimension of V is not in F(λ), then V is semisimple. Moreover, we prove that for each d∈F(λ) there exist a symmetric rigid tensor category C over k and a non-semisimple object V∈C of dimension d such that SλV is semisimple (which shows that our result is the best possible). In particular, Theorem 4.3 extends two theorems of Serre for C=Rep(G), G is a group, and SλV is n⋀V or SymnV, and proves a conjecture of Serre (1997) [S2].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 11, 1 December 2010, Pages 3183-3198