کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4586716 | 1334111 | 2010 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Broué's abelian defect group conjecture holds for the Harada–Norton sporadic simple group HN
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In representation theory of finite groups, there is a well-known and important conjecture due to M. Broué. He conjectures that, for any prime p, if a p-block A of a finite group G has an abelian defect group P, then A and its Brauer corresponding block B of the normaliser NG(P) of P in G are derived equivalent (Rickard equivalent). This conjecture is called Broué's abelian defect group conjecture.We prove in this paper that Broué's abelian defect group conjecture is true for a non-principal 3-block A with an elementary abelian defect group P of order 9 of the Harada–Norton simple group HN. It then turns out that Broué's abelian defect group conjecture holds for all primes p and for all p-blocks of the Harada–Norton simple group HN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 3, 1 August 2010, Pages 394-429
Journal: Journal of Algebra - Volume 324, Issue 3, 1 August 2010, Pages 394-429