کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586716 1334111 2010 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Broué's abelian defect group conjecture holds for the Harada–Norton sporadic simple group HN
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Broué's abelian defect group conjecture holds for the Harada–Norton sporadic simple group HN
چکیده انگلیسی

In representation theory of finite groups, there is a well-known and important conjecture due to M. Broué. He conjectures that, for any prime p, if a p-block A of a finite group G has an abelian defect group P, then A and its Brauer corresponding block B of the normaliser NG(P) of P in G are derived equivalent (Rickard equivalent). This conjecture is called Broué's abelian defect group conjecture.We prove in this paper that Broué's abelian defect group conjecture is true for a non-principal 3-block A with an elementary abelian defect group P of order 9 of the Harada–Norton simple group HN. It then turns out that Broué's abelian defect group conjecture holds for all primes p and for all p-blocks of the Harada–Norton simple group HN.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 3, 1 August 2010, Pages 394-429