کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586719 1334111 2010 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Galois functors and entwining structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Galois functors and entwining structures
چکیده انگلیسی

Galois comodules over a coring can be characterised by properties of the relative injective comodules. They motivated the definition of Galois functors over some comonad (or monad) on any category and in the first section of the present paper we investigate the role of the relative injectives (projectives) in this context.Then we generalise the notion of corings (derived from an entwining of an algebra and a coalgebra) to the entwining of a monad and a comonad. Hereby a key role is played by the notion of a grouplike natural transformation g:I→G generalising the grouplike elements in corings. We apply the evolving theory to Hopf monads on arbitrary categories, and to opmonoidal monads with antipode on autonomous monoidal categories (named Hopf monads by Bruguières and Virelizier) which can be understood as an entwining of two related functors.As well known, for any set G the product G×− defines an endofunctor on the category of sets and this is a Hopf monad if and only if G allows for a group structure. In the final section the elements of this case are generalised to arbitrary categories with finite products leading to Galois objects in the sense of Chase and Sweedler.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 3, 1 August 2010, Pages 464-506