کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586771 1334113 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Irreducible characters of groups associated with finite nilpotent algebras with involution
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Irreducible characters of groups associated with finite nilpotent algebras with involution
چکیده انگلیسی

An algebra group is a group of the form P=1+J where J is a finite-dimensional nilpotent associative algebra. A theorem of Z. Halasi asserts that, in the case where J is defined over a finite field F, every irreducible character of P is induced from a linear character of an algebra subgroup of P. If (J,σ) is a nilpotent algebra with involution, then σ naturally defines a group automorphism of P=1+J, and we may consider the fixed point subgroup CP(σ). Assuming that F has odd characteristic p, we show that every irreducible character of CP(σ) is induced from a linear character of a subgroup of the form CQ(σ) where Q is a σ-invariant algebra subgroup of P. As a particular case, the result holds for the Sylow p-subgroups of the finite classical groups of Lie type.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 9, 1 November 2010, Pages 2405-2417