کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586821 1334116 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Power-associative algebras that are train algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Power-associative algebras that are train algebras
چکیده انگلیسی

We investigate the structure of power-associative algebras that are train algebras. We first show the existence of idempotents, which are all principal and absolutely primitive. We then study the train equation involving the Peirce decomposition. When the algebra is finite-dimensional, it turns out that the dimensions of the Peirce components are invariant and that the upper bounds for their nil-indexes are reached for some idempotent. Further, locally train algebras are shown to be train algebras. We then get a complete description of the set of idempotents by giving their explicit formulas, including several illustrative examples. Some attention is paid to the Jordan case, where we discuss conditions forcing power-associative train algebras to be Jordan algebras. It is also shown that finitely generated Jordan train algebras are finite-dimensional. For a nth-order Bernstein algebra of period p, we prove that power-associativity necessitates p=1. In this case, there are 2n−1 possible train equations, which are explicitly described.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 324, Issue 6, 15 September 2010, Pages 1159-1176