کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586854 1334117 2009 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The structure of rings of quotients
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The structure of rings of quotients
چکیده انگلیسی

For an arbitrary ring R we completely characterize when Q(R), the maximal right ring of quotients of R, is a direct product of indecomposable rings and when Q(R) is a direct product of prime rings in terms of conditions on ideals of R. Our work generalizes decomposition results of Goodearl for a von Neumann regular right self-injective ring and of Jain, Lam, and Leroy for Q(R) when R is right nonsingular. To develop our results, we define a useful dimension on bimodules and characterize the subset of ideals of R which are dense in ring direct summands of Q(R). A structure theorem for RB(Q(R)), the subring of Q(R) generated by {re|r∈Rande∈B(Q(R))}, is provided for a semiprime ring R. Our methods allow us to properly generalize Rowen's theorem for semiprime PI-rings. We also apply our results to Functional Analysis to obtain a direct product decomposition of the local multiplier algebra, Mloc(A), of a C∗-algebra A. As a byproduct, we obtain a complete description of a C∗-algebra whose extended centroid is Cℵ. As a consequence, we show that a C∗-algebra with only finitely many minimal prime ideals and satisfying a polynomial identity is finite-dimensional.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 9, 1 May 2009, Pages 2545-2566