کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4586927 | 1334121 | 2010 | 20 صفحه PDF | دانلود رایگان |

We study the structural and homological properties of graded Artinian modules over generalized Weyl algebras (GWAs), and this leads to a decomposition result for the category of graded Artinian modules. Then we define and examine a category of graded modules analogous to the BGG category O. We discover a condition on the data defining the GWA that ensures O has a system of projective generators. Under this condition, O has nice representation-theoretic properties. There is also a decomposition result for O. Next, we give a necessary condition for there to be a strongly graded Morita equivalence between two GWAs. We define a new algebra related to GWAs, and use it to produce some strongly graded Morita equivalences. Finally, we give a complete answer to the strongly graded Morita problem for classical GWAs.
Journal: Journal of Algebra - Volume 323, Issue 9, 1 May 2010, Pages 2449-2468