کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4586964 1334123 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear dynamical systems over finite rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Linear dynamical systems over finite rings
چکیده انگلیسی

The problem of linking the structure of a finite linear dynamical system with its dynamics is well understood when the phase space is a vector space over a finite field. The cycle structure of such a system can be described by the elementary divisors of the linear function, and the problem of determining whether the system is a fixed point system can be answered by computing and factoring the system's characteristic polynomial and minimal polynomial. It has become clear recently that the study of finite linear dynamical systems must be extended to embrace finite rings. The difficulty of dealing with an arbitrary finite commutative ring is that it lacks of unique factorization. In this paper, an efficient algorithm is provided for analyzing the cycle structure of a linear dynamical system over a finite commutative ring. In particular, for a given commutative ring R such that |R|=q, where q is a positive integer, the algorithm determines whether a given linear system over Rn is a fixed point system or not in time O(n3log(nlog(q))).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 8, 15 April 2009, Pages 2149-2155