کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587142 1334131 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bounds and asymptotic minimal growth for Gorenstein Hilbert functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Bounds and asymptotic minimal growth for Gorenstein Hilbert functions
چکیده انگلیسی

We determine new bounds on the entries of Gorenstein Hilbert functions, both in any fixed codimension and asymptotically.Our first main theorem is a lower bound for the degree i+1 entry of a Gorenstein h-vector, in terms of its entry in degree i. This result carries interesting applications concerning unimodality: indeed, an important consequence is that, given r and i, all Gorenstein h-vectors of codimension r and socle degree e⩾e0=e0(r,i) (this function being explicitly computed) are unimodal up to degree i+1. This immediately gives a new proof of a theorem of Stanley that all Gorenstein h-vectors in codimension three are unimodal.Our second main theorem is an asymptotic formula for the least value that the ith entry of a Gorenstein h-vector may assume, in terms of codimension, r, and socle degree, e. This theorem broadly generalizes a recent result of ours, where we proved a conjecture of Stanley predicting that asymptotic value in the specific case e=4 and i=2, as well as a result of Kleinschmidt which concerned the logarithmic asymptotic behavior in degree .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 5, 1 March 2009, Pages 1510-1521