کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587182 1334133 2010 49 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Representation of artinian partially ordered sets over semiartinian von Neuman regular algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Representation of artinian partially ordered sets over semiartinian von Neuman regular algebras
چکیده انگلیسی

If R is a semiartinian von Neumann regular ring, then the set PrimR of primitive ideals of R, ordered by inclusion, is an artinian poset in which all maximal chains have a greatest element. Moreover, if PrimR has no infinite antichains, then the lattice L2(R) of all ideals of R is anti-isomorphic to the lattice of all upper subsets of PrimR. Since the assignment U↦rR(U) defines a bijection from any set SimpR of representatives of simple right R-modules to PrimR, a natural partial order is induced in SimpR, under which the maximal elements are precisely those simple right R-modules which are finite dimensional over the respective endomorphism division rings; these are always R-injective. Given any artinian poset I with at least two elements and having a finite cofinal subset, a lower subset I′⊂I and a field D, we present a construction which produces a semiartinian and unit-regular D-algebra DI having the following features: (a) SimpDI is order isomorphic to I; (b) the assignment H↦SimpDI/H realizes an anti-isomorphism from the lattice L2(DI) to the lattice of all upper subsets of SimpDI; (c) a non-maximal element of SimpDI is injective if and only if it corresponds to an element of I′, thus DI is a right V-ring if and only if I′=I; (d) DI is a right and left V-ring if and only if I is an antichain; (e) if I has finite dual Krull length, then DI is (right and left) hereditary; (f) if I is at most countable and I′=∅, then DI is a countably dimensional D-algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 323, Issue 3, 1 February 2010, Pages 790-838