کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587247 1334136 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rings over which the transpose of every invertible matrix is invertible
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rings over which the transpose of every invertible matrix is invertible
چکیده انگلیسی

We prove that the transpose of every invertible square matrix over a ring R is invertible if and only if R/rad(R) is commutative. Many other characterizations are obtained for such rings R in terms of U(R) (the group of units of R), including, for instance, c+ba∈U(R)⇒c+ab∈U(R), and 1+abc−cba∈U(R) (for all a,b,c∈R). We also consider a natural weakening of these conditions, namely, 1+abc∈U(R)⇒1+cba∈U(R), and show that, for von Neumann regular rings, this is a (necessary and) sufficient condition for the commutativity of R.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 322, Issue 5, 1 September 2009, Pages 1627-1636