کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587253 1334136 2009 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monads and comonads on module categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Monads and comonads on module categories
چکیده انگلیسی

Let A be a ring and MA the category of right A-modules. It is well known in module theory that any A-bimodule B is an A-ring if and only if the functor −⊗AB:MA→MA is a monad (or triple). Similarly, an A-bimodule C is an A-coring provided the functor −⊗AC:MA→MA is a comonad (or cotriple). The related categories of modules (or algebras) of −⊗AB and comodules (or coalgebras) of −⊗AC are well studied in the literature. On the other hand, the right adjoint endofunctors HomA(B,−) and HomA(C,−) are a comonad and a monad, respectively, but the corresponding (co)module categories did not find much attention so far. The category of HomA(B,−)-comodules is isomorphic to the category of B-modules, while the category of HomA(C,−)-modules (called C-contramodules by Eilenberg and Moore) need not be equivalent to the category of C-comodules.The purpose of this paper is to investigate these categories and their relationships based on some observations of the categorical background. This leads to a deeper understanding and characterisations of algebraic structures such as corings, bialgebras and Hopf algebras. For example, it turns out that the categories of C-comodules and HomA(C,−)-modules are equivalent provided C is a coseparable coring. Furthermore, we describe equivalences between categories of HomA(C,−)-modules and comodules over a coring D in terms of new Galois properties of bicomodules. Finally, we characterise Hopf algebras H over a commutative ring R by properties of the functor HomR(H,−) and the category of mixed HomR(H,−)-bimodules. This generalises in particular the fact that a finite dimensional vector space H is a Hopf algebra if and only if the dual space H∗ is a Hopf algebra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 322, Issue 5, 1 September 2009, Pages 1719-1747