کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587389 1334142 2009 50 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tannaka–Kreıˇn reconstruction and a characterization of modular tensor categories
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Tannaka–Kreıˇn reconstruction and a characterization of modular tensor categories
چکیده انگلیسی

We show that every modular category is equivalent as an additive ribbon category to the category of finite-dimensional comodules of a Weak Hopf Algebra. This Weak Hopf Algebra is finite-dimensional, split cosemisimple, weakly cofactorizable, coribbon and has trivially intersecting base algebras. In order to arrive at this characterization of modular categories, we develop a generalization of Tannaka–Kreıˇn reconstruction to the long version of the canonical forgetful functor which is lax and oplax monoidal, but not in general strong monoidal, thereby avoiding all the difficulties related to non-integral Frobenius–Perron dimensions. In the more general case of a finitely semisimple additive ribbon category, not necessarily modular, the reconstructed Weak Hopf Algebra is finite-dimensional, split cosemisimple, coribbon and has trivially intersecting base algebras.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 12, 15 June 2009, Pages 3714-3763