کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587477 1334145 2009 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorics in affine flag varieties
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Combinatorics in affine flag varieties
چکیده انگلیسی

The Littelmann path model gives a realization of the crystals of integrable representations of symmetrizable Kac–Moody Lie algebras. Recent work of Gaussent and Littelmann [S. Gaussent, P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (1) (2005) 35–88] and others [A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (3) (2001) 561–575; S. Gaussent, G. Rousseau, Kac–Moody groups, hovels and Littelmann's paths, preprint, arXiv: math.GR/0703639, 2007] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the affine Hecke algebra. In this paper we define a refined alcove walk model which encodes the points of the affine flag variety. We show that this combinatorial indexing naturally indexes the cells in generalized Mirković–Vilonen intersections.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 11, 1 June 2009, Pages 3469-3493