کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587502 1334146 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gröbner deformations, connectedness and cohomological dimension
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Gröbner deformations, connectedness and cohomological dimension
چکیده انگلیسی

In this paper we will compare the connectivity dimension c(P/I) of an ideal I in a polynomial ring P with that of any initial ideal of I. Generalizing a theorem of Kalkbrener and Sturmfels [M. Kalkbrener, B. Sturmfels, Initial complex of prime ideals, Adv. Math. 116 (1995) 365–376], we prove that c(P/LT≺(I))⩾min{c(P/I),dim(P/I)−1} for each monomial order ≺. As a corollary we have that every initial complex of a Cohen–Macaulay ideal is strongly connected. Our approach is based on the study of the cohomological dimension of an ideal a in a noetherian ring R and its relation with the connectivity dimension of R/a. In particular we prove a generalized version of a theorem of Grothendieck [A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), in: Séminaire de Géométrie Algébrique du Bois Marie, 1962]. As consequence of these results we obtain some necessary conditions for an open subscheme of a projective scheme to be affine.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 322, Issue 7, 1 October 2009, Pages 2492-2507