کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587680 1334154 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characters of finite reductive Lie algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Characters of finite reductive Lie algebras
چکیده انگلیسی

For any finite group of Lie type G(q), Deligne and Lusztig [P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976) 103–161] defined a family of virtual -characters of G(q) such that any irreducible character of G(q) is an irreducible constituent of at least one of the . In this paper we study analogues of this result for characters of the finite reductive Lie algebra G(q) where G=Lie(G). Motivated by the results of [E. Letellier, Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras, Lecture Notes in Math., vol. 1859, Springer-Verlag, 2005] and [G. Lusztig, Representations of reductive groups over finite rings, Represent. Theory 8 (2004) 1–14], we define two families and of virtual -characters of G(q). We prove that they coincide when θ is in general position and that they differ in general. We verify that any character of G(q) appears in some . We conjecture that this is also true if is replaced by .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 6, 15 March 2009, Pages 1696-1710