کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4587684 | 1334154 | 2009 | 40 صفحه PDF | دانلود رایگان |

The basic elements of Galois theory for algebraic quantum groups were given in the paper ‘Galois Theory for Multiplier Hopf Algebras with Integrals’ by Van Daele and Zhang. In this paper, we supplement their results in the special case of Galois objects: algebras equipped with a Galois coaction by an algebraic quantum group, such that only the scalars are coinvariants. We show how the structure of these objects is as rich as the one of the quantum groups themselves: there are two distinguished weak K.M.S. functionals, related by a modular element, and there is an analogue of the antipode squared. We show how to reflect the quantum group across a Galois object to obtain a (possibly) new algebraic quantum group. We end by considering an example.
Journal: Journal of Algebra - Volume 321, Issue 6, 15 March 2009, Pages 1746-1785