کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587684 1334154 2009 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Galois objects for algebraic quantum groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Galois objects for algebraic quantum groups
چکیده انگلیسی

The basic elements of Galois theory for algebraic quantum groups were given in the paper ‘Galois Theory for Multiplier Hopf Algebras with Integrals’ by Van Daele and Zhang. In this paper, we supplement their results in the special case of Galois objects: algebras equipped with a Galois coaction by an algebraic quantum group, such that only the scalars are coinvariants. We show how the structure of these objects is as rich as the one of the quantum groups themselves: there are two distinguished weak K.M.S. functionals, related by a modular element, and there is an analogue of the antipode squared. We show how to reflect the quantum group across a Galois object to obtain a (possibly) new algebraic quantum group. We end by considering an example.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 321, Issue 6, 15 March 2009, Pages 1746-1785