کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587752 1334157 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing the core of ideals in arbitrary characteristic
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Computing the core of ideals in arbitrary characteristic
چکیده انگلیسی

Let R be a local Gorenstein ring with infinite residue field of arbitrary characteristic. Let I be an R-ideal with g=htI>0, analytic spread ℓ, and let J be a minimal reduction of I. We further assume that I satisfies Gℓ and depthR/Ij⩾dimR/I−j+1 for 1⩽j⩽ℓ−g. The question we are interested in is whether core(I)=Jn+1:∑b∈In(J,b) for n≫0. In the case of analytic spread Polini and Ulrich show that this is true with even weaker assumptions [C. Polini, B. Ulrich, A formula for the core of an ideal, Math. Ann. 331 (2005) 487–503, Theorem 3.4]. We give a negative answer to this question for higher analytic spreads and suggest a formula for the core of such ideals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 319, Issue 7, 1 April 2008, Pages 2855-2867