کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587901 1334164 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gauss extensions and total graded subrings for crossed product algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Gauss extensions and total graded subrings for crossed product algebras
چکیده انگلیسی

Let V be a total subring of a skew field K and let (G,P) be a right ordered group with P the cone of non-negative elements so that a crossed product K*G of G over K has a right quotient skew field Q(K*G). We want to determine total subrings R of Q(K*G) with R∩K=V, that is, extensions of V in Q(K*G). We describe the class of all those extensions R, called Gauss extensions of V, for which A=R∩K*G is a graded subring of K*G with if for x∈G and a∈K. This can be applied to give explicit constructions of such subrings A and their corresponding extensions R obtained through localization. Information about the prime ideals of R and the graded prime ideals of A is obtained, and it is shown that the skew fields are quotient skew fields of the crossed products for certain subgroups E of G with the residue skew field V/J(V) of V. This result is one of the motivations to consider crossed products K*G rather than just the skew group ring of G over K.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 316, Issue 1, 1 October 2007, Pages 189-205