کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4587955 1334166 2008 81 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vers une décomposition de Jordan des blocs des groupes réductifs finis
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Vers une décomposition de Jordan des blocs des groupes réductifs finis
چکیده انگلیسی

Let G be a reductive algebraic group over an algebraic closure of a prime field Fp, defined over Fq, with Frobenius endomorphism F. Let GF be the subgroup of rational points. Let ℓ be a prime number. Assume that ℓ is different from p. If (G∗,F) is in duality with (G,F), then, by a theorem of M. Broué and J. Michel [M. Broué, J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989) 56–67], for any ℓ-bloc B of GF there exists a unique F(G∗)-conjugacy class (s) of ℓ′-semi-simple elements such that some irreducible representation of B is in the rational Lusztig's series associated to (s). If s=1, B is said to be unipotent. If G is not connected, with identity component G○, define the “unipotent ℓ-blocs of GF” as the ℓ-blocks that cover some unipotent ℓ-bloc of F(G○). Assuming ℓ is good for G, we construct from (G,F) and (s) some reductive algebraic group (G(s),F) defined over Fq and a one-to-one map from the set of ℓ-blocks of GF with associated class (s) onto the set of “unipotent” ℓ-blocks of GF(s) such that, if b corresponds to B, then–there is a significant height preserving one-to-one map from the set of irreducible representations Irr(B) onto the set Irr(b),–the respective defect groups of b and B are isomorphic, the associated Brauer categories are equivalent.One do not assume that the center of G is connected, the class of s may be isolated in G∗.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 319, Issue 3, 1 February 2008, Pages 1035-1115