کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588024 1334169 2007 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distributive congruence lattices of congruence-permutable algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Distributive congruence lattices of congruence-permutable algebras
چکیده انگلیسی

We prove that every distributive algebraic lattice with at most ℵ1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The ℵ1 bound is optimal, as we find a distributive algebraic lattice D with ℵ2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence neither of any group nor of any module), thus solving negatively a problem of E.T. Schmidt from 1969. Furthermore, D may be taken as the congruence lattice of the free bounded lattice on ℵ2 generators in any non-distributive lattice variety.Some of our results are obtained via a functorial approach of the semilattice-valued ‘distances’ used by B. Jónsson in his proof of Whitman's Embedding Theorem. In particular, the semilattice of compact elements of D is not the range of any distance satisfying the V-condition of type 3/2. On the other hand, every distributive 〈∨,0〉-semilattice is the range of a distance satisfying the V-condition of type 2. This can be done via a functorial construction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 311, Issue 1, 1 May 2007, Pages 96-116