کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588132 1334173 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Pairs of commuting nilpotent matrices, and Hilbert function
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Pairs of commuting nilpotent matrices, and Hilbert function
چکیده انگلیسی

Let K be an infinite field. There has been recent study of the family H(n,K) of pairs of commuting nilpotent n×n matrices, relating this family to the fibre H[n] of the punctual Hilbert scheme A[n]=Hilbn(A2) over the point np of the symmetric product Symn(A2), where p is a point of the affine plane A2 [V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (1) (2001) 3–8; R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (1) (2003) 56–80; A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (3) (2003) 653–683]. In this study a pair of commuting nilpotent matrices (A,B) is related to an Artinian algebra K[A,B]. There has also been substantial study of the stratification of the local punctual Hilbert scheme H[n] by the Hilbert function as [J. Briançon, Description de HilbnC[x,y], Invent. Math. 41 (1) (1977) 45–89], and others. However these studies have been hitherto separate.We first determine the stable partitions: i.e. those for which P itself is the partition Q(P) of a generic nilpotent element of the centralizer of the Jordan nilpotent matrix JP. We then explore the relation between H(n,K) and its stratification by the Hilbert function of K[A,B]. Suppose that dimKK[A,B]=n, and that K is algebraically closed of characteristic 0 or large enough p. We show that a generic element of the pencil A+λB,λ∈K has Jordan partition the maximum partition P(H) whose diagonal lengths are the Hilbert function H of K[A,B].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 320, Issue 3, 1 August 2008, Pages 1235-1254