کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588136 1334173 2008 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Equivalence of diagonal matrices over local rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Equivalence of diagonal matrices over local rings
چکیده انگلیسی

It is proved that two diagonal matrices diag(a1,…,an) and diag(b1,…,bn) over a local ring R are equivalent if and only if there are two permutations σ,τ of {1,2,…,n} such that [R/aiR]l=[R/bσ(i)R]l and [R/aiR]e=[R/bτ(i)R]e for every i=1,2,…,n. Here [R/aR]e denotes the epigeny class of R/aR, and [R/aR]l denotes the lower part of R/aR. In some particular cases, like for instance in the case of R local commutative, diag(a1,…,an) is equivalent to diag(b1,…,bn) if and only if there is a permutation σ of {1,2,…,n} with aiR=bσ(i)R for every i=1,…,n. These results are obtained studying the direct-sum decompositions of finite direct sums of cyclically presented modules over local rings. The theory of these decompositions turns out to be incredibly similar to the theory of direct-sum decompositions of finite direct sums of uniserial modules over arbitrary rings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 320, Issue 3, 1 August 2008, Pages 1288-1310