کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588184 1334175 2008 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum polynomials of the elements of prime order in representations of quasi-simple groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Minimum polynomials of the elements of prime order in representations of quasi-simple groups
چکیده انگلیسی

We determine the irreducible representations of quasi-simple groups in which some element of prime order p has less than p distinct eigenvalues. Let p be a prime greater than 2. Let C denote the field of complex numbers, GL(n,C) the group of all (n×n)-matrices over C. Let G⊆GL(n,C) be a finite irreducible subgroup, Z(G) the center of G. Let p>2 be a prime. We call G an Np-group if it contains a matrix g such that gp is scalar, g has at most p−1 distinct eigenvalues and g does not belong to a proper normal subgroup of G. We assume p>2 as no N2-group exist for n>1. This paper is a major step toward the determination of all Np-groups. This will serve for recognition of finite linear groups containing a given matrix with the above property for some p. The bulk of the work is to determine quasi-simple Np-groups. This is done in the current paper, and the general case will be dealt with in a subsequent work.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 320, Issue 6, 15 September 2008, Pages 2496-2525