کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588237 1334177 2007 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Golod property of Stanley–Reisner rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Golod property of Stanley–Reisner rings
چکیده انگلیسی

Recently in [M. Jöllenbeck, On the multigraded Hilbert and Poincaré series of monomial rings, J. Pure Appl. Algebra 207 (2) (2006) 261–298] the second author made a conjecture about the structure of as an N×Nn-graded vector space, where A is a monomial ring over a field k, that is, the quotient of a polynomial ring P=k[x1,…,xn] by a monomial ideal, and he verified this conjecture for several classes of such rings. Using the results of [A. Berglund, Poincaré series and homotopy Lie algebras of monomial rings, Licentiate thesis, Stockholm University, http://www.math.su.se/reports/2005/6/, 2005] by the first author, we are able to prove this conjecture in general. In particular we get a new explicit formula for the multigraded Hilbert series of . A surprising consequence of our results is that a monomial ring A is Golod if and only if the product on is trivial. For Stanley–Reisner rings of flag complexes we get a complete combinatorial characterization of Golodness. We introduce the concept of ‘minimally non-Golod complexes,’ and show that boundary complexes of stacked polytopes are minimally non-Golod. Finally we discuss the relation between minimal non-Golodness and the Gorenstein∗ property for simplicial complexes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 315, Issue 1, 1 September 2007, Pages 249-273