کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588331 1334181 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An algorithm for unimodular completion over Noetherian rings
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
An algorithm for unimodular completion over Noetherian rings
چکیده انگلیسی

We give an algorithm for the well-known result asserting that if R is a polynomial ring in a finite number of variables over a Noetherian ring A of Krull dimension d<∞, then for n⩾max(3,d+2), SLn(R) acts transitively on Umn(R). For technical reasons we demand that the Noetherian ring A has a theory of Gröbner bases and contains an infinite set E={y1,y2,…} such that yi−yj∈A× for each i≠j. The most important guiding examples are affine rings K[x1,…,xm]/I and localizations of polynomial rings S−1K[x1,…,xm], with K an infinite field. Moreover, we give an algorithmic proof of Suslin's stability theorem over these rings. For the purpose to prepare the ground for this algorithmic generalizations of the Quillen–Suslin theorem (corresponding to the particular case A is a field), we will give in the first section a constructive proof of an important lemma of Suslin which is the only nonconstructive step in Suslin's second elementary solution of Serre's conjecture. This lemma says that for a commutative ring A, if 〈v1(X),…,vn(X)〉=A[X] where v1 is monic and n⩾3, then there exist γ1,…,γℓ∈En−1(A[X]) such that . Thanks to this constructive proof, Suslin's second proof of Serre's conjecture becomes fully constructive.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 316, Issue 2, 15 October 2007, Pages 483-498