کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588397 1334183 2007 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smooth varieties of almost minimal degree
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Smooth varieties of almost minimal degree
چکیده انگلیسی

In this article we study non-linearly normal smooth projective varieties X⊂Pr of deg(X)=codim(X,Pr)+2. We first give geometric characterizations for X (Theorem 1.1). Indeed X is the image of an isomorphic projection of smooth varieties of minimal degree. Also if is not the Veronese surface, then there exists a smooth rational normal scroll Y⊂Pr which contains X as a divisor linearly equivalent to H+2F where H is the hyperplane section of Y and F is a fiber of the projection morphism . By using these characterizations, (1) we determine all the possible types of Y from the type of (Theorem 1.2), and (2) we investigate the relation between the Betti diagram of X and the type of Y (Theorem 1.3). In particular, we clarify the relation between the number of generators of the homogeneous ideal of X and the type of Y. As an application, we construct non-linearly normal examples where the converse to Theorem 1.1 in [D. Eisenbud, M. Green, K. Hulek, S. Popescu, Restriction linear syzygies: Algebra and geometry, Compos. Math. 141 (2005) 1460–1478] fails to hold (Remark 2).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 314, Issue 1, 1 August 2007, Pages 185-208