کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588400 1334183 2007 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence varieties of regular rings and complemented modular lattices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Existence varieties of regular rings and complemented modular lattices
چکیده انگلیسی

Goodearl, Menal, and Moncasi [K.R. Goodearl, P. Menal, J. Moncasi, Free and residually artinian regular rings, J. Algebra 156 (1993) 407–432] have shown that free regular rings with unit are residually artinian. We extend this result to the case without unit and use it to derive that free regular rings as well as free complemented (sectionally complemented) Arguesian lattices are residually finite. Here, quasi-inversion for rings and complementation (sectional complementation, respectively) for lattices are considered as fundamental operations in the appropriate signature. It follows that the equational theory of each of the classes listed above is decidable. The approach is via so-called existence varieties in ring or lattice signature. Those are classes closed under operators H, S, and P within the class of all regular rings or the class of all sectionally complemented modular lattices. We show that any existence variety in the considered classes is generated by its artinian or finite height members.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 314, Issue 1, 1 August 2007, Pages 235-251