کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4588444 1334185 2007 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Branching rules for unitary groups and spectra of invariant differential operators on complex Grassmannians
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Branching rules for unitary groups and spectra of invariant differential operators on complex Grassmannians
چکیده انگلیسی

In this paper, we prove a combinatorial rule describing the restriction of any irreducible representation of U(n+m) to the subgroup U(n)×U(m). We also derive similar rules for the reductions from SU(n+m) to S(U(n)×U(m)), and from SU(n+m) to SU(n)×SU(m). As applications of these representation-theoretic results, we compute the spectra of the Bochner–Laplacian on powers of the determinant bundle over the complex Grassmannian Grn(Cn+m). The spectrum of the Dirac operator acting on the spin Grassmannian Grn(Cn+m) is also partially computed. A further application is given by the determination of the spectrum of the Hodge–Laplacian acting on the space of smooth functions on the unit determinant bundle over Grn(Cn+m).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 318, Issue 2, 15 December 2007, Pages 520-552